top of page
Great strides have been made in the area of hydrogel science since the first hydrogels were described in the 1960s. Hydrogelation occurs in response to a physical or chemical stimulus, such as temperature, pH, electric or magnetic field, enzymatic modification, light and others. These three-dimensional networks consisting of mainly water molecules represent a unique class of materials, with many applications including cell therapeutics, cartilage/bone regeneration, sustained drug release and drug delivery systems, tissue engineering, 3D bioprinting and extracellular culture medium (ECM) for cancer cells, stem cells and neuronal cells. ChemBioGels 2021 will feature on-going work in the area of hydrogel science.
Great strides have been made in the area of hydrogel science since the first hydrogels were described in the 1960s. Hydrogelation occurs in response to a physical or chemical stimulus, such as temperature, pH, electric or magnetic field, enzymatic modification, light and others. These three-dimensional networks consisting of mainly water molecules represent a unique class of materials, with many applications including cell therapeutics, cartilage/bone regeneration, sustained drug release and drug delivery systems, tissue engineering, 3D bioprinting and extracellular culture medium (ECM) for cancer cells, stem cells and neuronal cells. ChemBioGels 2021 will feature on-going work in the area of hydrogel science.
Great strides have been made in the area of hydrogel science since the first hydrogels were described in the 1960s. Hydrogelation occurs in response to a physical or chemical stimulus, such as temperature, pH, electric or magnetic field, enzymatic modification, light and others. These three-dimensional networks consisting of mainly water molecules represent a unique class of materials, with many applications including cell therapeutics, cartilage/bone regeneration, sustained drug release and drug delivery systems, tissue engineering, 3D bioprinting and extracellular culture medium (ECM) for cancer cells, stem cells and neuronal cells. ChemBioGels 2021 will feature on-going work in the area of hydrogel science.
Professor Ehud Gazit
Professor Ehud Gazit
Organizing Committee
Paula Margarida Ferreira
Centre of Chemistry, University of Minho
André Carvalho
Centre of Chemistry, University of Minho
Teresa Pereira
Centre of Chemistry, University of Minho
José Alberto Martins
Centre of Chemistry, University of Minho
Sérgio Veloso
Centre of Physics, University of Minho
Carlos Oliveira
Centre of Chemistry, University of Minho
Peter John Jervis
Centre of Chemistry, University of Minho
Carolina Amorim
Centre of Chemistry, University of Minho
Valéria Gomes
Centre of Physics, University of Minho
bottom of page